

UNIVERSIDADE FEDERAL DE PERNAMBUCO PRÓ-REITORIA PARA ASSUNTOS ACADÊMICOS DEPARTAMENTO DE DESENVOLVIMENTO DO ENSINO

PROGRAMA DE COMPONENTE CURRICULAR

TIPO DE	COMPONENTE (Marque um X na	opção)				
X Disciplina Atividade complementar Monografia			Estágio Prática de ensino Módulo			
STATUS I	OO COMPONENTE (Marque um X	na opção)				
OBRIG	ATÓRIO	X ELETIVO		OPTATIVO		
DADOS DO	COMPONENTE					
Código	Nome	Carga	Carga Horária Semanal		C. H. Global	Período
		Teórica	Prática			ſ
FI589	INTRODUÇÃO À DINÂMICA DE FLUIDOS	E 4	0	04	60	4
			G(1 1 4			
Pré-requisite	os	Co-Requisitos	Cálculo 4		Requisitos C.H.	

EMENTA

Conceitos fundamentais da mecânica de fluidos, aplicações básicas das equações de movimento para fluidos ideais e fluidos viscosos, introdução a alguns tópicos especiais da dinâmica de fluidos.

CONTEÚDO PROGRAMÁTICO

- 1. Introdução à Mecânica de Meios Contínuos: Hipótese do contínuo. Forças e deformações em um meio contínuo: Tensor das tensões, tensor das deformações e tensor taxa de deformação. Sólidos, líquidos e gases.
- 2. Tensores Cartesianos: Coordenadas e mudança de base. Contração e produto de tensores. Tensores simétrico e antisimétrico. Cálculo tensorial: gradiente, divergência, teoremas da divergência e de Stokes.
- 3. Cinemática de Fluidos: Descrições lagrangeana e euleriana. Derivada material. Trajetórias e linhas de corrente. Deslocamentos elementares em um fluido. Taxa de variação de integrais materiais. Volume e superfície materiais. Teorema do transporte de Reynolds.
- 4. Leis de Conservação: Princípio geral de conservação. Conservação da massa e equação da continuidade. Conservação do momento linear. Balanço de momento em um volume fixo. Conservação da energia. Equação de balanço da entropia.
- 5. Relações Constitutivas, Equações de Movimento e Condiçõees de Contorno: Fluidos ideais e equação de Euler. Teorema de Bernoulli e aplicações. Fluidos newtonianos e equação de Navier-Stokes. Similaridade e número de Reynolds. Condições de contorno: Interfaces fluido-sólido e líquido-fluido. Tensão Superficial .
- 6. Hidrostática: Princípios de Pascal e de Arquimedes. Força sobre paredes planas. Efeitos de capilaridade.
- 7. Dinâmica da Vorticidade: Linhas e tubos de vorticidade. Teoremas de Kelvin e Helmholtz. Equação da vorticidade. Circulação em torno de um sólido. Lei de Biot-Savart.
- 8. Escoamentos Laminares: Escoamento de Couette. Escoamento de Poiseuille. Escoamento de Hagen-Poiseuille. Escoamento de Taylor-Couette. Escoamento em um plano inclinado. Escoamento de Stokes. Escoamento na célula de Hele-Shaw. Escoamento em meios porosos.
- 9. Escoamentos Irrotacionais em Três Dimensões: Potencial escalar e potencial vetor. Teorema de Bernoulli para escoamento potencial. Escoamento potencial de um fluido incompressível. Escoamentos potenciais básicos. Paradoxo de D'Alembert. Massa virtual.
- 10. Escoamentos Irrotacionais em duas Dimensões: Funções de uma variável complexa. Potencial complexo. Escoamentos potenciais básicos. Teorema do círculo. Teoremas de Blasius e de Kutta-Joukwoski. Escoamentos com circulação. Transformação de Joukwoski. Transformação de Schwarz-Christoffel. Escoamentos na célula de Hele-Shaw. Dinâmica de vórtices puntiformes.
- 11. Introdução a Instabilidades Hidrodinâmicas: Instabilidade de Rayleigh-Taylor. Instabilidade de Kelvin-Helmholtz. Instabilidade de Saffman-Taylor.

BIBLIOGRAFIA BÁSICA

- I. M. Cohen, P. K. Kundu, "Fluid Mechanics", Academic Press, 2007.
- J. H. Spurk, "Fluid Mechanics", Springer, 1997.
- M. Cattani, "Elementos de Mecânica dos Fluidos", Edgar Bluecher, 2005.
- G. L. Vasconcelos, "Introdução à Dinâmica de Fluidos", Notas de Aula, 2011.

DEPARTAMENTO A QUE PERTENCE A DISCIPLINA	HOMOLOGADO PELO COLEGIADO DE CURSO
ASSINATURA DO CHEFE DO DEPARTAMENTO	ASSINATURA DO COORDENADOR DO CURSO OU ÁREA