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No campo de processamento de sinais, as transformadas discretas trigonométricas desempen-
ham um papel muito importante. A aplicação das transformadas nos permite olhar para os
dados em análise sob outras perspectivas, domínio das transformadas, trazendo novas infor-
mações e interpretações sobre estes dados. Em particular, três transformadas se destacam:
a transfromada discreta de Fourier (DFT), a transfromada discreta de Hartley (DHT) e a
transformada discre do coseno (DCT). Apesar de serem amplamente utilizadas, a computação
dessas transformadas requer um alto custo computacional. Algoritmos rápidos para o cálculo
da DFT, DHT e DCT diminuem consideravelmente o custo de sua computação. Entretanto,
a necessidade de implementações usando aritmética em ponto flutuante nÃ£o é eliminada.
Neste sentido, as aproximações matriciais se tornam uma alternativa de baixa complexidade
para a computação da DFT, DHT e DCT. Neste trabalho, é introduzido um método baseado
em uma heurística gulosa para obtenção de aproximações para uma determinada matrix. A
melhor forma de aplicação do método a DFT, DHT e DCT é discutida. O método é uti-
lizado para obtenção de novas aproximações matriciais para a DCT de comprimento 8. As
approximações obtidas são avaliadas por meio de figuras de mérito clássicas na área e no
contexto de compressão de imagens por um esquema do tipo JPEG. Diversas aproximações
propostas apresentam resultados melhores que os da DCT em termos do SSIM nos experimen-
tos de compressÃ£o de imagens. Um algoritmo rápido é proposto para uma das aproximações
introduzidas e sua implementação em FPGA realizada.
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In the field of signal processing, the discrete trigonometric transforms play an important role.
The use of these transforms allows to look at the data under study from different perspec-
tives, the transforms domain, bring out new informations and interpretations of the data. In
particular, there are tree transforms that stand out: the discrete Fourier transform (DFT),
the discrete Hartley transform (DHT), the discrete cosine transform (DCT). Despite being
widely used, the computational cost of implementing these transforms is high. The use of fast
algorithms to implement the DFT, DHT, and DCT, substantially reduce its cost. However,
the it is still necessary to consider float-point arithmetic. In this sense, low-complexity matrix
approximations appear as an alternative way to compute these transforms. In this work, a
greedy algorithm to obtain low-complexity approximations for a given matrix. We discuss
the best ways to apply the proposed method to approximate the DFT, DHT and DCT. The
method is used to find approximations for the 8-point DCT. The proposed approximations are
evaluated using classic figures of merit and in the context of image compression. Several of the
proposed approximations overcome the DCT in terms of SSIM in the image compression ex-
periments. For one of the introduced approximations we propose a fast algorithm and present
its implementation in FPGA.
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Chapter 1
Introduction

1.1 Motivation and context

A signal might be seen as a function that changes with time and/or space and transmits

information about the behavior of the phenomenon under study [1], [2]. The IEEE Transac-

tions on Signal Processing internet page states that the “term ’signal’ includes, among others,

audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical

signals” [3].

The field of signal processing comprises, among other things, a collection of techniques

to obtain, manipulate, analyze, represent, transmit and extract information from an input

signal [2]. In particular, transforms play an important role in this area of research. The use of

transforms allow us to look at data from a different perspective, the transform domain, which

often adds new interpretations to the data under analysis. For example, the Fourier transform

decomposes an input signal into its frequency components and the Karhunen–Loève transform

is capable of decorrelating data sequences [4].

Among all the possible transforms, the ones with sinusoidal kernels are particularly im-

portant [5]. Special interest is given to the discrete transforms, because they are suitable for

real-world applications using digital computers which are inherently capable of discrete, finite

calculations only [6].

The discrete Fourier transform (DFT) is one of the most important discrete transforms [7].

It finds application in many different problems such as solving difference equations [8], image

processing [9], [10], beamforming [11], [12], analysis of radar signals [13], [14], voice process-



ing [15], time series [16]–[18], spectral estimation [19], harmonic regression [20], and analysis

of biomedical signals [21].

The discrete Hartley transform (DHT), introduced by Bracewell in 1983 [22], is also an

important transform. The DHT is an attractive discrete transformation mainly due to the

following properties: (i) the DHT is isomorphic to the DFT [22]; (ii) the multiplicative com-

plexities of the DHT and the DFT are identical in the sense discussed in Heideman [23];

(iii) unlike the DFT, the DHT is a real transform, which means it does not requires com-

plex arithmetic for its computation [22]; (vi) the forward and inverse transforms are basically

the same; and (v) the DHT is very symmetric, which facilitates its computation and imple-

mentation [24]. Because of its similarities with the DFT, the DHT is also applied in many

different fields of study. Some examples are: image processing [25], [26]; convolution compu-

tation [27], [28]; audio processing [29]; biomedical image analysis [30]; and solution of power

system problems [31].

The DCT is applied, for example, in areas such as image processing [32]–[34], audio pro-

cessing [35], watermarking [36], [37], and gait recognition [38]. However, its most popular use

is in data compression [4]. In particular, the DCT is applied in several image and video com-

pression patterns, such as the JPEG [39], MPEG [40], H.261 [41], H.263 [42], H.264/AVC [43],

and HEVC [44]. The good performance of the DCT for data compression can be justified by

the fact the the DCT is asymptotically equivalent to the Karhunen–Loève transform (KLT),

which is the optimal transform for data compression, when the input signal has some specific

features [4].

Although these transforms are very popular, the computational cost of implementing them

requires float-point arithmetic. Fast algorithms can dramatically reduce their computational

cost. However, the number of calls in applications of these transforms can be extraordinarily

high. For instance, a single image frame of high-definition TV (HDTV), that can be encoded

with the DCT, contains 32.400 8×8 image subblocks. Therefore, computational savings in the

transformation step may effect significant performance gains, both in terms of speed and power

consumption [45], [46].

Being quite a mature area of research [47], there is little room for improvement on the exact

computation of the DFT, DHT, and DCT. Thus, one approach to further minimize the com-

putational cost of computing the discrete transforms is the use of matrix approximations [48],

[49]. Such approximations provide matrices with similar mathematical behavior to the exact

9



transform while presenting a dramatically low arithmetic cost.

1.2 Goals

In this work we aim at:

. Introduce a greedy search algorithm for matrix approximation based on angular distance

between vectors;

. Discuss how the proposed method can be applied to the DFT, DHT and DCT;

. Use the proposed algorithm to introduce new approximations for the DCT of length N = 8;

. Test the efficiency of the proposed approximations on image compression experiments when

compared to the exact DCT and other approximations in literature.

1.3 Structure

The present work is structured as follows:

In Chapter 2, we present the discrete trigonometric transforms that we are going discuss

along the work, the DFT, DHT, and DCT. An overview of their mathematical structure is

made.

In Chapter 3, we present some popular fast algorithms and low-complexity approximations

for the DCT found in literature. The low-complexity approximations shown in this chapter

are going to be used further for comparison with the approximations introduced here.

The search algorithm for matrix approximation is introduced in Chapter 4. The proposed

method is based on an optimization problem with no constraints. A constrained to orthogo-

nality version of the proposed method is also introduced. Then, since we are also considering

the DFT, which has its coefficients defined over the complex field, we also discuss how the

method can be used to approximate matrices with complex elements.

Some features of the matrix given as an input to the algorithm might be explored in order

to reduce the complexity of the procedure. Thus, in Chapter 5, we explore some features in

the structure of the DFT, DHT and DCT, and define approximations schemes based on the

combination of features considered and version of the proposed method used.

In Chapter 6, the approximation schemes defined in the previous chapter are used to find

new approximations for the DCT of length N = 8. The proposed approximations are evaluated

10



according to popular figures of merit and compared to exact DCT and other approximations

in literature.

In Chapter 7, a JPEG-like experiment for image compression is defined and used to evaluate

the performance of the proposed approximations in comparison to the DCT and the other

approximations in literature.

In Chapter 8, an overview of the topics discussed and all the results obtained is presented.

11



Chapter 2
Discrete trigonometric

transforms

TwoN -dimensional vectors, say x =
[
x0 x1 . . . xN−1

]>
and X =

[
X0 X1 . . . XN−1

]>
,

relate to each other through a discrete sinusoidal transform according to the following expres-

sions:

Xk =
N−1∑
i=0

xi · ker(i, k,N), k = 0, 1, . . . , N − 1, (2.1)

xi =
N−1∑
k=0

Xk · ker−1(i, k,N), i = 0, 1, . . . , N − 1, (2.2)

where ker(·, ·, ·) and ker−1(·, ·, ·) are the forward and inverse transformation kernels. In this

work, although our main goal is to propose new approximations for the discrete cosine trans-

form (DCT), we also discuss the discrete Fourier transform (DFT) and the discrete Hartley

transform (DHT), which are related transforms.

2.1 Discrete Fourier transform

The N -point DFT has its coefficients defined as in (2.1) with its kernel given by

ker(i, k,N) = cos
(2πik

N

)
− j sin

(2πik
N

)
= e−j2πik/N , i, k = 0, 1, . . . , N − 1.

Its inverse kernel is furnished by

ker−1(i, k,N) = 1
N

[
cos

(2πik
N

)
+ j sin

(2πik
N

)]
= 1
N
ej2πik/N , i, k = 0, 1, . . . , N − 1,

where j =
√
−1.



Matrix representation of the DFT

The DFT of an input signal of length N can be calculated by a matrix operation as follows:

X = FN · x, (2.3)

and FN is the DFT matrix given by:

FN =



1 1 1 . . . 1

1 ωN ω2
N . . . ω

(N−1)
N

1 ω2
N ω4

N . . . ω
2(N−1)
N

...
...

... . . . ...

1 ω
(N−1)
N ω

2(N−1)
N . . . ω

(N−1)(N−1)
N


,

where ωN = e−j2π/N . The matrix FN is orthogonal. Then, we have that F−1
N = 1

NF∗N , where

F∗N is the Hermitian matrix of FN [50].

Figure 2.1 displays, for some values of N , the image representation of the real and complex

parts of FN . The darker colors represent smaller values while lighter color represent larger

values. This kind of representation is useful to see patterns and symmetries in the matrix,

which can be explored to simplify computations and identify redundacies in the computation

of (2.3).

Computational complexity

To calculate the DFT coefficients (Equation (2.3)), it is necessary to perform N2 complex

multiplications and N(N−1) complex additions [6]. Each complex multiplication requires four

real multiplications and two real additions. Each complex addition requires two real additions.

Therefore, the computation of all the DFT coefficients requires at most 4N2 real multiplications

and N(4N − 2) real additions.

2.2 Discrete Hartley transform

The DHT forward and inverse kernels are given by:

ker(i, k,N) = 1
N

cas
(2πik

N

)
, k = 0, 1, . . . , N − 1, (2.4)

ker−1(i, k,N) = cas
(2πik

N

)
, i = 0, 1, . . . , N − 1.
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(a) <(F8) (b) =(F8) (c) <(F16) (d) =(F16)

(e) <(F32) (f) =(F32) (g) <(F64) (h) =(F64)

Figure 2.1: Image representation of the real and imaginary parts of the DFT matrix considering
N = 8, 16, 32, 64. The functions <(·) and =(·) return the real and complex parts of its arguments,
respectively.

where cas(x) = cos(x) + sin(x).

The DFT and DHT relate to each other through a very simple expression. Let XFourier
k

and XHartley
k be kth coefficient of the DFT and DHT spectrum, respectively, computed from x

according to (2.1). Then, the DHT coefficients are calculated in terms of the DFT coefficients

as follows

XHartley
k = <(XFourier

k )−=(XFourier
k ). (2.5)

The matrix representation of the DHT is naturally derived from (2.5) as [51]:

HN = <(FN )−=(FN ).

On the other hand, the DFT can be obtained from the DHT as follows [51]

<(FN ) = E(HN ) and =(FN ) = O(HN ),

where E(·) and O(·) return the even and odd parts of its input, respectively.

The image representations for N = 8, 16, 32, 64, are shown in Figure 2.2. As expected,

because the DFT and the DHT share similar mathematical definitions, the image patterns

shown in Figures 2.2 and 2.1 are comparable, being more evident as N grows.

14



(a) H8 (b) H16 (c) H32 (d) H64

Figure 2.2: Image representation of the DHT matrix for N = 8, 16, 32, 64.

Computational complexity

To transform an input signal, x, using the DHT, the following matrix computation is

perfomed [51]:

X = 1
N

HNx.

The arithmetic complexity of the above matrix multiplication requires at most N2 + N real

multiplications and N(N − 1) additions.

2.3 Discrete cosine transform

There are eight different DCTs. However, only DCT-II is shown to optimal in decorrelating

some class of signals [4]. In this work, we only considered the DCT-II. Then, we refer to the

DCT-II simply as DCT.

The DCT has its forward and inverse kernels defined as:

ker(i, k,N) = (1− (1− 1/
√

2)δk)
√

2
N

cos
(2πi+ kπ

2N

)
, k = 0, 1, . . . , N − 1,

ker−1(i, k,N) = (1− (1− 1/
√

2)δk)
√

2
N

cos
(2πk + iπ

2N

)
, i = 0, 1, . . . , N − 1,

where

δk =


0, if k = 0

1, otherwise.

The derivation of the DCT from the KLT is shown below.
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The Karhunen–Loève transform

Let x be a random input vector with zero mean, which represents the input data to be

decorrelated, where the superscript > indicates the transposition operation. The KLT is a

linear transformation represented by an orthogonal matrix W which decorrelates the variables

in x. The decorrelated output vector y, is obtained according to the following operation:

y =
[
y0 y1 . . . yN−1

]>
= W> · x. (2.6)

If the transformation W> decorrelates the input variables, then the covariance matrix of the

output vector y is given by the following diagonal matrix [4]:

Ry = E{y · y>} = diag(λ0, λ1, . . . , λN−1), (2.7)

where E(·) represents the expectation operator, diag(·) is the diagonal matrix generated by its

arguments, and

λk = E
{
y2
k

}
, k = 0, 1, . . . , N − 1,

are the variances of the vector y.

Replacing (2.6) in (2.7), it is possible to rewrite the covariance matrix of y as:

Ry = E
{

W> · x · x> ·W
}

= W> · E
{

x · x>
}
·W = W> ·Rx ·W,

where Rx is the covariance matrix of x which, by construction, is real and symmetric [10], [50].

Since W is intended to be orthogonal, it must satisfy W−1 = W>. Thus, we can write:

Rx ·
[
w0|w1| · · · |wN−1

]
=
[
w0|w1| · · · |wN−1

]
·Ry, (2.8)

where wk, k = 0, 1, . . . , N − 1, represents the kth column of the matrix W. Therefore,

expression (2.8) can be rewritten as the following eigenvalue problem:

Rx ·wk = λk ·wk, k = 0, 1, . . . , N − 1. (2.9)

Note that the variances coincide with the eigenvalues. Solving (2.9), we obtain the columns

of W, which are ordered according to the decreasing order of their respective eigenvalues [4],

thus resulting in the KLT.

Derivation of the discrete cosine transform

If the input vector x is described by a first-order Markovian model with high correlation [49],

then the elements of the correlation matrix associated with x are given by [4], [10]:

[Rx]m,n = ρ|m−n|, m, n = 0, 1, . . . , N − 1, (2.10)
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where ρ ∈ [0, 1] is the correlation coefficient. Solving (2.9), we find that the mth component

of the kth eigenvector wk, for k,m = 0, 1, . . . , N − 1, is given by [4], [52]:

ck,m =
√

2
N + λk

· sin
(
µk

[
(m+ 1)− N + 1

2

]
+ (k + 1)π

2

)
, (2.11)

where

λk = 1− ρ2

1− 2ρ cos(µk) + ρ2 (2.12)

is the kth eigenvalue associated to wk and µk, k = 0, 1, . . . , N − 1, are the real-valued roots of

the trancendental equation in µ

tan(Nµ) = − (1− ρ2) sin(µ)
(1 + ρ2) cos(µ)− 2ρ. (2.13)

Assuming highly correlated input data, that is, ρ ≈ 1, we notice that the right side of (2.13)

goes to zero. Therefore, the N real-valued positive roots of (2.13) are given by

µk = kπ

N
, k = 0, 1, . . . , N − 1.

Thus, replacing the values of µk in (2.12), we have that λk = 0 for k 6= 0. Now, there is only

λ0 left to compute in order to obtain a closed expression for (2.11). From [53, p. 251], we have

that the trace [4] of Rx, defined as

tr(Rx) =
N−1∑
n=0

[Rx]n,n,

equals the sum of the N eigenvalues. From (2.10), we have that tr(Rx) = N . Thus

tr(Ry) =
N−1∑
k=0

λk = λ0 = tr(Rx) = N ∴ λ0 = N.

Finally, we obtain that

c0,m = 1√
N
, k = 0,

ck,m =
√

2
N

sin
(
k(2m+ 1)

2N + π

2

)
=
√

2
N

cos
((2m+ 1)kπ

2N

)
, k 6= 0.

Introducing a constant αk, we can combine the equations above, obtaining

ck,m =
√

2
N
αk cos

((2m+ 1)kπ
2N

)
, (2.14)

where α0 = 1/
√

2 and αk = 1, if k 6= 0.

The linear transformation whose matrix has elements defined as in (2.14) is called the

discrete cosine transform [54], [55]. Therefore, the DCT is asymptotically equivalent to the
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(a) C8 (b) C16 (c) C32 (d) C64

Figure 2.3: Image representation of the DCT matrix for N = 8, 16, 32, 64.

KLT when ρ → 1. Such relationship justifies the good decorrelation and energy compression

properties of the DCT when the input data follows a highly correlated first order stationary

Markovian process.

Similar to the DFT and the DHT, the DCT matrix, CN , also shows some patterns that

that are easier to see in its image representation. Figure 2.3 shows those images.

Computational complexity

The computation of the DCT transform of an input signal x,

X = CN · x

requires at most N2 multiplications and N(N − 1) additions.

The arithmetic computational complexities of the DFT, DHT and DCT discussed here

refer only to its direct implementation. In practice, fast algorithms are employed, reducing the

arithmetic cost significantly.

18



Chapter 3
Fast algorithms and

approximations for the
8-point DCT

In this chapter, we present some fast algorithms and low complexity approximations for

the DCT found in literature.

3.1 Fast Algorithms

Let C8 be the 8-point DCT matrix. Because of its symmetries, C8 can be represented in

the following way:

C8 = 1
2 ·


γ3 γ3 γ3 γ3 γ3 γ3 γ3 γ3
γ0 γ2 γ4 γ6 −γ6 −γ4 −γ2 −γ0
γ1 γ5 −γ5 −γ1 −γ1 −γ5 γ5 γ1
γ2 −γ6 −γ0 −γ4 γ4 γ0 γ6 −γ2
γ3 −γ3 −γ3 γ3 γ3 −γ3 −γ3 γ3
γ4 −γ0 γ6 γ2 −γ2 −γ6 γ0 −γ4
γ5 −γ1 γ1 −γ5 −γ5 γ1 −γ1 γ5
γ6 −γ4 γ2 −γ0 γ0 −γ2 γ4 −γ6

 ,



where

γ0 =

√
2 +

√
2 +
√

2
2 ≈ 0,9808 . . . , γ1 =

√
2

2 ≈ 0,707 . . . ,

γ2 =

√
2 +

√
2−
√

2
2 ≈ 0,8315 . . . , γ3 =

√
2 +
√

2
2 ≈ 0,9239 . . . ,

γ4 =

√
2−

√
2−
√

2
2 ≈ 0,5556 . . . , γ5 =

√
2−
√

2
2 ≈ 0,3827 . . . ,

γ6 =

√
2−

√
2 +
√

2
2 ≈ 0,1951 . . .

Thus, an input vector of length 8 might have its components decorrelated by the following

expression:

X = C8 · x,

where X is the decorrelated vector.

Explicitly, we have that

X0

X1
...

X7

 =



c0,0 c0,1 · · · c0,7

c1,0 c1,1 · · · c1,7
...

... . . . ...

c7,0 c7,1 · · · c7,7

 ·


x0

x1
...

x7

 =



c0,0x0 + c0,1x1 + · · ·+ c0,7x7

c1,0x0 + c1,1x1 + · · ·+ c1,7x7
...

c7,0x0 + c7,1x1 + · · ·+ c7,7x7

 . (3.1)

Therefore, the arithmetic cost to decorrelate the input vector using C8 is 64 multiplications

and 54 additions.

Besides having a closed form, an import factor for the usage of the DCT is the existence of

fast algorithms that allows its efficient calculation. Classic fast algorithms for the computation

of the DCT length 8 include (i) Yuan et al. [56], (ii) Arai et al. [54], (iii) Chen et al. [57],

(iv) Feig e Winograd [58] and Loeffler et al. [59]. The arithmetic cost of those and other

methods is listed in Table 3.1.

The theoretical minimum of multiplicative complexity for this length is 11 multiplications,

which is reached, for example, by the Loeffler et al. [59] algorithm. This result is obtained

when we consider: (i) the computation of the DCT as a cyclical convolution, and (ii) the

results presented in [75], as demonstrated in [27].
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Table 3.1: Arithmetic cost of the fast algorithms for the exact DCT of length 8

Algorithm Multiplication Additions

Loeffler et al. [59]–[61] 11 29
Wang [62] 13 29
Suehiro [63] 12 29
Yuan et al. [56], [64] 12 29
Lee [65]–[67] 12 29
Hou [68]–[70] 12 29
Arai et al. [54], [60], [71] 13 29
Chen et al. [57], [60], [72] 16 26
Vetterli [73] 12 29
Feig–Winograd [58], [74] 22 28

3.2 Matrix approximations

As shown on the previous section, the entries of the DCT matrix are irrational quantities.

Thus, given the limited precision of computers, its practical implementation with exact nu-

meric precision it is unfeasible [39]. In this sense, the fast algorithms previously mentioned

are implemented by means of truncation and/or rounding of its coefficients with its precision

defined according to the desired application [76]. Despite substantially reducing the computa-

tional cost of its implementation, the fast algorithms for the DCT considered do not eliminate

the need for the use of float point arithmetic. The cost of the elementary arithmetic operations

in float point numeric representation are usually bigger than the cost from operations in fixed

point arithmetic or simpler representations [4]. For this reason, the hardware implementation

using float point arithmetic requires greater consumption of power and area resources. Addi-

tionally, given the maturity of the area of fast algorithms, there is little space for improvement

over the ones in the literature.

Other approach to further reduce the computational cost of the DCT computation is the

use of matrix approximations [48], [49]. Such approximations are, basically, matrices with low

computational cost that have similar mathematical structure to the exact transforms. That is,

let CN be the DCT of length N , an approximation for CN , ĈN , is a matrix such that

X̂ = ĈN · x ≈ CN · x = X.

Thus, X̂ ≈ X according to some criteria, as, for example, proximity or coding measures [4].

An approximation for C can be obtained from a low complexity multiplierless matrix T. That
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is, a matrix whose elements are such as zeros or powers of two, since in binary arithmetic

multiplications by powers of two represent only bit shifting. Multiplication by elements like

the ones described are called trivial multiplications [6].

Next, we present the matrix approximations existing in literature for the DCT.

3.2.1 DCT approximations

Several approximations for C8 can be found in literature. Some of those are presented

below.

The Walsh-Hadamard transform: The order N Walsh-Hadamard transform (WHT) [77] is

given by a binary N ×N matrix, TWHT–N , with entries in {±1} that satisfies:

TWHT–N ·T>WHT–N = N · IN ,

where IN represents the identity matrix. The WHT of length 8 is given by:

TWHT–8 =


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1


The WHT is used in image processing due to its good performance and simplicity of

implementation. Then, even though the WHT was not proposed as an approximation for the

DCT, it is used as an alternative to the DCT.

The signed DCT (SCDT): The first matrix in the literature proposed as an approximation

for the DCT was introduced by Haweel in [78]. The signed DCT (SDCT) is a non orthogonal

matrix obtained from the application of the sign function to each element of C8. The sign

function is given by sign(x) = |x|/x, x 6= 0 and sign(0) = 0. Thus, the low complexity matrix

associated to the 8-point SDCT is given by:

TSDCT =


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1
1 −1 1 −1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1

 .

The level 1 approximation by Lengwehasatit and Ortega: Lengwehasatit and Ortega pro-

posed five levels of approximation for the DCT based on the input signal features [79]. The
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level one approximation is generated by the low complexity orthogonal matrix below:

TLO =


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1

2 −
1
2 −1 −1 − 1

2
1
2 1

1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1
2 −1 1 − 1

2 −
1
2 1 −1 1

2
0 −1 1 −1 1 −1 1 0

 .

The series of approximations BAS: The series of approximations BAS was proposed by

Bouguezel, Ahmad and Swamy [80]–[85]. Many of these approximations were obtained from

SDCT modifications [86]. Table 3.2 displays the matrices considered in this work.

Table 3.2: BAS approximations for C8

Transform Matrix Orthogonal?

TBAS–1 [80]


1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1

2 −
1
2 −1 −1 − 1

2
1
2 1

0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1
2 −1 1 − 1

2 −
1
2 1 −1 1

2
0 0 0 −1 1 0 0 0

 Yes

TBAS–2 [81]


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 0 0 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 0 0 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1

 No

TBAS–3 [82]


1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1 −1 −1 −1 −1 1 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 0 0 −1 1 0 0 0

 Yes

TBAS–4 [83]


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
2 1 −1 −2 −2 −1 1 2
2 1 −1 −2 2 1 −1 −2
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −2 2 −1 −1 2 −2 1
1 −2 2 −1 1 −2 2 −1

 Yes

TBAS–5 [84]


1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 0 0 −1 −1 0 0 1
0 0 1 0 0 −1 0 0
1 −1 −1 1 1 −1 −1 1
0 0 0 1 −1 0 0 0
1 −1 0 0 0 0 1 −1
0 −1 1 0 0 1 −1 0

 No

TBAS–6 [85]


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1

 Yes

The rounded DCT (RDCT): Given x ∈ R, let bxc be the largest integer that does not

exceed x. The round function as implemented in Matlab/Octave, is defined by: round(x) =
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sign(x) · bx+ 0,5c. Applied to matrices, the round function operated element wise.

The rounded DCT was proposed by Cintra and Bayer em [48]. The low complexity or-

thogonal matrix RDCT is obtained by the application of the rounding function to the DCT as

follows:

TRDCT = round(2 ·C) =


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0

 .

The modified RDCT: The modified RDCT (MRDCT) was introduced by Bayer and Cintra

in [87]. The MRDCT is an orthogonal matrix obtained by replacing some elements of the

RDCT matrix by zeros. Its explicit form is presented next:

TMRDCT =


1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 −1
1 0 0 −1 −1 0 0 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
0 −1 0 0 0 0 1 0
0 −1 1 0 0 1 −1 0
0 0 0 −1 1 0 0 0

 .
The difference matrix is given by:

TRDCT −TMRDCT =


0 0 0 0 0 0 0 0
0 1 1 0 0 −1 −1 0
0 0 0 0 0 0 0 0
1 0 0 −1 1 0 0 −1
0 0 0 0 0 0 0 0
1 0 0 1 −1 0 0 −1
0 0 0 0 0 0 0 0
0 −1 1 0 0 −1 1 0

 .

The series of approximations CBT: In [49], Cintra, Bayer and Tablada obtained a series of

approximations, which we are going to refer to as CBT, by means of applying several different

rounding approximations to the DCT matrix. The matrices introduced in [49] are shown in

Table 3.3.
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Table 3.3: Series of approximations CBT for C8

Transform Matrix Orthogonal?

TCBT–1 [49]


1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
0 1 −1 0 0 −1 1 0
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 0 0 −1 −1 0 0 1
0 −1 1 −2 2 −1 1 0

 Yes

TCBT–2 [49]


1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
2 0 0 −2 −2 0 0 2
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
0 −2 2 0 0 2 −2 0
0 −1 1 −2 2 −1 1 0

 Yes

TCBT–3 [49]


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 −1 1 −1 1 −1 1 0

 Yes

TCBT–4 [49]


1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
1 1 −1 −1 −1 −1 1 1
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 −1 1 −1 −1 1 −1 1
0 −1 1 −2 2 −1 1 0

 Yes

TCBT–5 [49], [88]


1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
2 1 −1 −2 −2 −1 1 2
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −1 1 −2 2 −1 1 0

 Yes

TCBT–6 [49]


1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 0 0 1 0 −1
1 −1 −1 1 1 −1 −1 1
0 −1 0 1 −1 0 1 0
0 −1 1 0 0 1 −1 0
0 0 1 −1 1 −1 0 0

 No

TCBT–7 [49]


2 2 2 2 2 2 2 2
2 2 1 1 −1 −1 −2 −2
2 1 −1 −2 −2 −1 1 2
2 −1 −2 −1 1 2 1 −2
2 −2 −2 2 2 −2 −2 −2
1 −2 1 2 −2 −1 2 −1
1 −2 2 −1 −1 2 −2 1
1 −1 2 −2 2 −2 1 −1

 No
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Chapter 4
Search method

Approximate transforms are low-complexity transformations capable of preserving desir-

able properties of the exact transform. The design of approximate transforms is often based

on structural aspects of the original, exact transforms, such as: symmetries [89], fast algo-

rithms [59], [68], parametrization [58], and numerical properties [56]. In a general manner, a

low-complexity factor T of an approximation for a trigonometric transform, C, is obtained by

solving the optimization problem below:

T = arg min
T′

approx(T′,C),

where approx(·, ·) is a specific objective function—such as proximity or performance mea-

sures [4]—submitted to several constraints, such as orthogonality and low complexity of the

candidate matrices T′.

In this chapter, we introduce a new search method for matrix approximation. Notice that,

even though the development of the method was motivated by the trigonometric transforms,

the proposed method are completely general and might be used to approximate any matrix.

Although our main goal is to find new approximations for the DCT, we are going to explore

in this chapter the ramifications of the proposed method when applied to the DHT and DFT

also.

4.1 Overall structure and initial concepts

Let A be an arbitraryN×M matrix with elements in R, and ak =
[
ak,0 ak,1 . . . ak,M−1

]
,

k = 0, 1, . . . , N − 1, be a row vector that represents the kth row of A. Note that A might be



described by its rows as follows:

A =



a0

a1
...

aN−1

 .

Aiming at finding a low complexity approximation T for A, we broke down the problem of

approximating the whole matrix into the problem of approximating its rows by low complexity

row vectors. Such heuristic can be categorized as greedy [90]. Therefore, our goal is to derive

integer low complexity matrices

T =



t0

t1
...

tN−1

 ,

such that its rows tk, k = 0, 1, . . . , N − 1, satisfy

tk = arg min
t∈DP

error(t, ak), k = 0, 1, . . . , N − 1, (4.1)

where DP is the search space, presented next.

4.1.1 Search Space

In order to obtain a low-complexity matrix T, its entries must be computationally simple [4],

[6]. We define the search space as the collection of M -point row vectors whose entries are in

a set, say P , of low-complexity elements. That is, the search space DP is composed by all

the possible permutations of length M of the elements in P . Therefore, the cardinality of

the search space is given by |DP | = |P|M . A particular vector in DP is denoted by DP(i),

i = 1, 2, . . . , |DP |. Some choices for P include: P1 = {0,±1} and P2 = {0,±1,±2}.

For example, if considering approximating an 8×8 matrix, Tables 4.1 and 4.2 display some

elements of the search spaces DP1 and DP2 . These search spaces have cardinality |P1|8 = 38 =

6, 561 and |P2|8 = 58 = 390, 625 elements, respectively.

4.1.2 Objective Function

The problem posed in (4.1) requires the identification of an error function to quantify the

“distance” between the candidate row vectors from DP and the rows of the exact matrix A.
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Table 4.1: Examples of approximated vectors from the search space DP1

i DP1 (i)

1
[
−1 −1 −1 −1 −1 −1 −1 −1

]
2

[
−1 −1 −1 −1 −1 −1 −1 0

]
...

...
3200

[
0 0 0 −1 0 0 0 1

]
3201

[
0 0 0 −1 0 0 1 −1

]
...

...
6560

[
1 1 1 1 1 1 1 0

]
6561

[
1 1 1 1 1 1 1 1

]
Table 4.2: Examples of approximated vectors from the search space DP2

i DP2 (i)

1
[
−2 −2 −2 −2 −2 −2 −2 −2

]
2

[
−2 −2 −2 −2 −2 −2 −2 −1

]
...

...
150000

[
−1 2 1 −2 −2 −2 −2 −2

]
150001

[
−1 2 1 −2 −2 −2 −2 −1

]
...

...
390624

[
2 2 2 2 2 2 2 1

]
390625

[
2 2 2 2 2 2 2 2

]

Related literature often consider error functions based on matrix norms [91], proximity to

orthogonality [86], and coding performance [4].

In this work, we propose the utilization of a distance based on the angle between vectors

as the objective function to be minimized. Let u and v be two M -dimensional vectors defined

over RM . The angle between vectors is simply given by:

angle(u,v) = arccos
( 〈u,v〉
‖u‖ · ‖v‖

)
, (4.2)

where 〈·, ·〉 is the inner product and ‖ · ‖ indicates the norm induced by the inner product [53].
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4.2 Angle based method

Based on the previous concepts, we are able to propose the angle based method, which is

based on the optimization problem stated as follows:

tk = arg min
t∈DP

angle(ak, t), k = 0, 1, . . . , N − 1. (4.3)

First, we determine the set P and built the search space DP . Then, for each row of A, we

generate a subset of the search space, D(k)
P , k = 0, 1, . . . , N − 1, containing all the vectors in

DP that are solutions to the problem in (4.3). Lastly, each approximate matrix is obtained as

a combination of the vectors in D(k)
P , k = 0, 1, . . . , N − 1. The number of matrices obtained is

given by
∏N−1
k=0 |D

(k)
P |. Therefore,

T(i) =



t0

t1
...

tN−1

 , i = 1, 2, . . . ,
N−1∏
k=0
|D(k)

P |,

where tk ∈ D(k)
P .

Example 4.1

Let A be a 4 × 4 matrix, |D(1)
P | = |D(3)

P | = 1, and |D(2)
P | = |D(4)

P | = 2. In this case, we

obtain
∏4
k=1 |D

(k)
P | = 1 · 2 · 1 · 2 = 4 approximate matrices, given by:

T(1) =



D(1)
P (1)

D(2)
P (1)

D(3)
P (1)

D(4)
P (1)

 , T(2) =



D(1)
P (1)

D(2)
P (2)

D(3)
P (1)

D(4)
P (1)

 , T(3) =



D(1)
P (1)

D(2)
P (1)

D(3)
P (1)

D(4)
P (2)

 , T(4) =



D(1)
P (1)

D(2)
P (2)

D(3)
P (1)

D(4)
P (2)

 ,

where D(k)
P (i), k = 0, 1, . . . , N − 1, i = 1, 2, . . . , |D(k)

P |, represents the ith vector in D(k)
P . �

The procedure for the angle based method is shown in Algorithm 1.

4.3 Angle based method - restricted to orthogonality

Note that the previous method does not guarantee that the obtained matrices are orthog-

onal. However, orthogonality is a desirable feature. So in order to ensure that, we need to

consider some other factors, discussed below.
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Algorithm 1 Pseudo algorithm for angle based method
Input: A, DP

Output: approximations (3 dimensional array containing all the obtained approximate matrices)

for k ← 0, 1, . . . , N − 1 do
angles← null vector of length |DP |
for i← 1, 2, . . . , |DP | do
angles(i)← angle(ak,DP(i));

end for
indexes← indexes of the vectors in DP for which angles = min(angles);
D(k)

P ← DP(indexes);
end for
approximations← Null array with dimensions N ×M ×

∏N−1
k=0 |D

(k)
P |;

approximations← All combinations of the vectors in D(k)
P , k = 0, 1, . . . , N − 1;

4.3.1 Orthogonality

Definition 4.1 – Orthogonality

We say that A is an orthogonal matrix if A ·A> = D, where D is a diagonal matrix. �

Definition 4.2 – Orthonormality

If A ·A> is the identity matrix, then A is said to be orthonormal. �

If T is orthogonal, then its inverse is given by T−1 = T> · D−1, where D the diagonal

matrix resulting from T · T>. In particular, if T is orthonormal, then T−1 = T>. As a

consequence of that, if T is orthogonal and can be decomposed into the product of p matrices,

that is,

T = A1 ×A2 × · · · ×Ap,

then

T−1 = T> ×D−1 = (A1 ×A2 × · · · ×Ap)> ×D−1 = A>p ×A>p−1 × · · · ×A>1 ×D−1.

It means that a fast algorithm for T can be easily converted into a fast algorithm for T−1.

Also, since T is a low-complexity matrix, T−1 would be low-complexity as well.

4.3.2 Search sequence

For the unrestricted method, since there is no constraints to the optimization problem, the

rows are approximated independently from each other. However, if considering orthogonality
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as a constraint, we define a dependency relation among the rows. Hence, the sequence in which

we approximate the rows must be considered.

There are N rows to be approximated. One way of doing it is—under some criteria–to

approximate the rows in the order they are displayed, that is, approximate row 1, then row

2, constrained to orthogonality with row 1, then row 3, constrained to orthogonality with

rows 1 and 2, and so on. That procedure corresponds to the sequence ℘1 = (1, 2, 3, . . . , N).

However, this is only a particular search sequence. Therefore, for a systematic procedure,

we must consider all the N ! possible permutations of ℘1. Let ℘m, m = 1, 2, . . . , N !, be the

mth permutation of ℘1, and ℘m(k), k = 0, 1, . . . , N − 1, be a particular element of ℘m. For

example, if N = 8, there are N ! = 40320 possible search sequences. In this case, we have

℘1250 = (1, 3, 7, 6, 5, 4, 8, 2) and ℘1250(2) = 7.

4.3.3 Optimization problem

Taking those last factors in consideration, we can now determine the optimization problem

in which to base the restricted to orthogonality version of the angle based algorithm. Fixing a

search sequence ℘m, the optimization problem is stated as follows:

t℘m(k) = arg min
t∈DP

angle(a℘m(k), t), k = 0, 1, . . . , N − 1, (4.4)

subject to

〈t℘m(i), t℘m(j)〉 = 0, i 6= j. (4.5)

The solution of the problem above returns N row vectors t℘m(0), t℘m(2), . . . , t℘m(N−1) that are

used as the rows of the approximate matrix T.

Algorithm 2 displays the procedure for the restricted to orthogonality version of the angle

based method.

4.4 Complex adaptation

The proposed method is based on the calculation of the angle between two vectors whose

elements are in R: a row of the input matrix and the candidate approximate vector. However,

one of the transforms we intent to approximate is the DFT, which has its coefficients defined

over the complex space, C. In this case, some adaptations need to be made.
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Algorithm 2 Algorithm for the angle based method restricted to orthogonality
Input: A; DP ; ℘ (N !×N matrix containing all the possible search sequences).
Output: approximations (3 dimensional array containing all the obtained approximate matrices).

approximations← Null array with dimensions N ×M ×N !;
for m← 1, 2, . . . , N ! do
for k ← 0, 1, . . . , N − 1 do
θmin ← 2π;
index← 1;
for i← 1, 2, . . . , |DP | do
aux← approximations(:, :,m) · (DP(i))>

if sum(aux) = 0 then
θ ← angle(a℘m(k),DP(i));
if θ < θmin then
θmin ← θ;
index← i;

end if
end if

end for
approximations(℘m(k), :,m)← DP(index);

end for
end for

Option A

A natural first option is to decompose the complex matrix in its real and complex compo-

nents and approximate each one using any version (unrestricted or restricted) of the proposed

method. Then, the DFT approximations are the combinations of the approximations found for

the real and complex components. Observe that, if using the restricted version of the method,

the approximations for the real and complex parts are going to be orthogonal, but there is no

guarantee that the resulting approximate matrices are orthogonal as well.

Option B

Other option would be to calculate the angle in the complex space. According to Scharn-

horst [92], one way of computing the angle between two M -dimensional complex vectors, say

r and s: is by considering its isometric vector space R2M .

Then, the angle between r and s is calculated as in (4.2) with

angle(r, s) = angle(r?, s?)
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where r? and s? are defined in R2N by the relation

r?2k = <(rk) and r?2k+1 = =(rk), k = 0, 1, . . . ,M − 1. (4.6)

The inverse operation is given by:

rk = r?2k + jr?2k+1 k = 0, 1, . . . ,M − 1. (4.7)

Let A be aN×M matrix whose coefficients are complex, that is, ai,j ∈ C, i = 0, 1, . . . , N−1,

j = 0, 1, . . . ,M − 1. By performing the mapping on (4.6) for each row of A, we obtain a new

real matrix B with dimensions N × 2M , i.e.

Complex N ×N matrix A (4.6)−−→ Real N × 2M matrix B. (4.8)

Then, B can be approximated by any version of the proposed method as they were described

earlier. Next, each approximate matrix obtained, B̂, must be converted from real to complex

again by applying (4.7) to each of its rows, i.e.

Real N × 2M matrix B̂ (4.7)−−→ Complex N ×N matrix Â. (4.9)

The matrices obtained from (4.9) are the complex approximations for the input matrix A.

In this case, the restricted version of the proposed method can not guarantee orthogonality

of the approximate matrices obtained. The approximations for the real N × 2M matrix are

going to be orthogonal. However, there is nothing that assures that its rows are still going to

be orthogonal after being converted back to complex vectors. Also, due the mapping in (4.8),

we are now approximating 2M -dimensional vectors. Therefore, the cardinality of the search

space is now given by |DP | = |P|2M .

Table 4.3 summarizes the modifications in each version of the method so they can approx-

imate complex matrices.

4.5 Remarks

Here we list some observations about the proposed method. Some of the following notes

are just general considerations while other points are going to be further explored in the next

chapter.

General

. If A already has any low complexity rows, they might be previously fixed and any of the

methods can be used to approximate only the remaining rows. This reduces processing time;
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Table 4.3: Procedures to approximate complex matrices using the unrestricted and restricted versions
of the angle based method

Angle based method
Complex angle Unrestricted Restricted to orthogonality

Option A

• Separate A into its
real and complex components
• Run Algorithm 1 for both components
• Combine the approximations obtained
for the real and complex components

• Separate A into its
real and complex components
• Run Algorithm 2 for both components
• Combine the approximations obtained
for the real and complex components

Option B

• Apply (4.8) to A
• Run Algorithm 1
• Apply (4.9) to the
approximations obtained

• Apply (4.8) to A
• Run Algorithm 2
• Apply (4.9) to the
approximations obtained

. Matrix symmetries may also be explored in order to reduce computational time.

Unrestricted version of the proposed method

. Since the unrestricted version of the method does not have to consider the search sequence,

it is faster than the restricted version;

. The rows are approximated independently, which allows the use of parallelization in order

to run it even faster;

. By construction, the approximations generated by a specific search space are all different.

Although different search spaces may generate the same approximations.

Restricted to orthogonality version of the proposed method

. For a particular search sequence, the algorithm may reach a point where it can not find a

vector in the search space that is orthogonal to the vectors already fixed in the approximation

matrix. From that point on, all the rows still to be approximated are going to be set as null

vectors in the approximate matrix;

. Some search sequences may generate the same approximation matrix;

. As for the two items above, the 3-dimensional array obtained from the method must be

“cleaned” in order to eliminate the singular matrices and the repeated ones. Only the

remaining matrices are actually valid approximations;

34



. Notice in Algorithm 2 we only change the candidate vector in the approximate matrix if

the angle between this vector and the matrix row is smaller than the previous minimum

angle. By doing so, we fix in the approximated matrix the first vector in the search space

which generates that minimum angle. Changing this condition may generate a different

approximate matrix.
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Chapter 5
Approximation schemes

As pointed on the previous chapter, some features of the matrix we aim at approximating

may be used in order to reduce the computational complexity of the approximation process.

In this chapter, we study some of these features and define the approximation schemes that

can be used to approximate the discrete trigonometric transforms we discussed.

5.1 Search space reduction

As presented on the previous chapter, our search space is built from a set of low complexity

elements. Some common choices for this set and the size of the corresponding search spaces

when approximating a N ×M matrix are displayed in Table 5.1.

Table 5.1: Examples of common sets and the size of the corresponding search space

Set (P) Size of the corresponding search space

{−1, 0, 1} 3M

{−2,−1, 0, 1, 2} 5M

{−1,−1/2, 0, 1/2, 1}, 5M

{−2,−1,−1/2, 0, 1/2, 1, 2} 7M

Observing the sets shown in Table 5.1 we can see that they are all symmetric around zero.

And it is important to have those negative and positive elements since the target matrices

also have positive and negative entries. In this sense, one way to reduce the size of the search

space, would be to consider only the positive part of the sets and add the signs later. Then,

we propose the following procedure to approximate an input matrix A:



1. Select the set P with only zero and positive elements;

2. Approximate abs(A) using Method I, where abs(·) returns the absolute value of its input.

When applied to matrices, the abs function operates element wise;

3. Define the approximations for A as

Â = âbs(A)� sign(A), (5.1)

where âbs(A) is an approximation obtained from step 2, and � represents the element

wise multiplication.

By performing the procedure above, the size of the search space is reduced and the sign

structure of the input matrix is maintained. As an example, Table 5.2 shows the proportional

reduction of the search space when A is a N × 8 matrix.

Table 5.2: Reduction of the size of the search space for some sets when M = 8

Set
Size of the original

search space (Table 5.1)
Size of the reduced

search space
Reduction of the search space

{0, 1} 38 ≈ 6.56× 103 28 = 2.56× 102 96.10%
{0, 1, 2} 58 ≈ 3.90× 105 38 ≈ 6.56× 103 98.32%
{0, 1/2, 1}, 58 ≈ 3.90× 105 38 ≈ 6.56× 103 98.32%
{0, 1/2, 1, 2} 78 ≈ 5.76× 106 48 ≈ 6.55× 104 98.86%

Note that the procedure proposed above can be used only in association with the unre-

stricted version of the method. This is due the fact that for the unrestricted version the rows

are approximated independently. Observe that, for the proposed procedure, we are approxi-

mating a non negative matrix with non negative elements. In this case, two row vectors are

orthogonal if, and only if, they have non zero elements in different positions, which causes the

inner product to be zero. Thus, if using this procedure associated with the restricted version

of the method, we have the following possible situations:

. If a row is approximated by a vector with more than one non zero element, the output matrix

is necessarily going to have at least one all zero row. Which means the matrix is singular

and it is not interesting for our proposes;

. Otherwise, the output matrix is going to be a permuted and/or scaled version of the identity

matrix. Which is also not interesting for decorrelation proposes.
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Therefore, for the restrited version of the method it is necessary to consider the original

sets and the search space remains the same size.

5.2 Fixing low complexity rows

All the transform matrices we are considering have some low complexity rows. In this case,

those rows may be previously fixed and any version of the proposed method can be used to

approximate the remaining rows. Note that, in this case, the restricted version may also be

used because all the transform matrices considered are orthogonal. Then, any set of rows we

select are orthogonal among each other and the approximations for the remaining rows are

constrained to be orthogonal to the set of rows initially fixed.

DFT and DHT

The DFT and DHT have the same low complexity rows, which is expected given their

similar kernels. The kernels of both transforms are built as a combination of cosine and sine

functions with their argument being 2πik
N . Then, for those two transforms, the low complexity

rows are the ones for which k = 0, N/4, N/2, 3N/4. For each of these values we have that:

. If k = 0, then 2πik
N = 0;

. If k = N
4 , then

2πik
N = π

2 i;

. If k = N
2 , then

2πik
N = πi;

. If k = 3N
4 , then 2πik

N = 3π
2 i.

Table 5.3 displays the sequences generated by the cosine ans sine functions when their argument

are the ones obtained above and i = 0, 1, 2, . . ..

As seen in Table 5.3, all the sequences have elements on the low complexity set {−1, 0, 1}.

For the DFT, its real and complex parts are given by the cosine and sine sequences shown in

Table 5.3, respectively, as shown in Figure 5.1.

For the DHT, its low complexity rows are going to be the sum of those sequences. The

graphic representation of those sequences is shown in Figure 5.2.

DCT

The DCT matrix does not have low complexity rows. However, for k = 0, N2 , the DCT

rows are scaled low complexity sequences, as show in Table 5.4. In this case, we can define
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Table 5.3: Cosine and sine sequences generated when k = 0, N/4, N/2, 3N/4

k Argument Generated sequences

0 0
cos(0) 1, 1, 1, 1, 1, 1, 1, . . .
sin(0) 0, 0, 0, 0, 0, 0, 0, . . .

N
4

π
2 i

cos(π2 i) 1, 0,−1, 0, 1, 0,−1, . . .
sin(π2 i) 0, 1, 0,−1, 0, 1, 0, . . .

N
2 πi

cos(πi) 1,−1, 1,−1, 1,−1, 1, . . .
sin(πi) 0, 0, 0, 0, 0, 0, 0, . . .

3N
4

3π
2 i

cos( 3π
2 i) 1, 0,−1, 0, 1, 0,−1, . . .

sin( 3π
2 i) 0,−1, 0, 1, 0,−1, 0, . . .

1

1 3 5 7 9 11 13 15

k
 =

 0

Real part

−1

0

1

1 3 5 7 9 11 13 15

k
 =

 N
/4

−1

0

1
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k
 =

 N
/2

−1

0
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k
 =

 3
N

/4
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k
 =

 0

Imaginary part

−1

0

1

1 3 5 7 9 11 13 15

k
 =

 N
/4

0
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k
 =

 N
/2

−1

0
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k
 =

 3
N

/4

Figure 5.1: Graphic representation of the real and imaginary parts of the low complexity sequences
that form the rows of the DFT matrix for k = 0, N/4, N/2, 3N/4.

Table 5.4: DCT row sequence for k = 0, N/2

k ck,m Row sequence (m = 0, 1, 2, . . .)

0 1√
N

1√
N
, 1√

N
, 1√

N
, 1√

N
, 1√

N
, 1√

N
, 1√

N
, . . . = 1√

N
(1, 1, 1, 1, 1, 1, 1 . . .)

N/2
√

2
N cos((2m+ 1)π4 ) 1√

N
,− 1√

N
,− 1√

N
, 1√

N
, 1√

N
,− 1√

N
, 1√

N
, . . . = 1√

N
(1,−1,−1, 1, 1,−1,−1 . . .)

that those rows as the low complexity sequences in Table 5.4.

5.2.1 Unrestricted version of the method

For the unrestricted version of the proposed method, we can not only fix some rows but

combine this with the search space reduction procedure proposed on the previous section.

Figures 5.3, 5.4 and 5.5 display the image representation of the absolute value of the transforms
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Figure 5.2: Graphic representation of the low complexity sequences that form the rows of the DHT
matrix for k = 0, N/4, N/2, 3N/4.

considered for N = 8, 16, 32, 64.

(a) abs(<(F8)) (b) abs(=(F8)) (c) abs(<(F16)) (d) abs(=(F16))

(e) abs(<(F32)) (f) abs(=(F32)) (g) abs(<(F64)) (h) abs(=(F64))

Figure 5.3: Image representation for the absolute value of the real and complex parts of the DFT
matrix for N = 8, 16, 32, 64.

In the images on Figures 5.3, 5.4 and 5.5 it is possible to identify the low complexity rows we

can previously fix on the approximation matrix. In particular, for the DFT and DHT matrices,

we can also see that some of the remaining rows are repeated. For example, in abs(<(F16))

(Figure 5.3(c)), rows k = 1, 7, 9, 15 are the same. Note that if abs(A) has repeated rows, then,

by definition of the unrestricted version of the method, the optimal solutions for those rows

are going to be the same. As a consequence, we only need to approximate the unique rows. In
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(a) abs(H8) (b) abs(H16) (c) abs(H32) (d) abs(H64)

Figure 5.4: Image representation for the absolute value of the DHT transform matrix for N =
8, 16, 32, 64.

(a) abs(C8) (b) abs(C16) (c) abs(C32) (d) abs(C64)

Figure 5.5: Image representation for the absolute value of the DC T transform matrix for N =
8, 16, 32, 64.

summary, if (i) using the unrestricted version; (ii) using the search space reduction procedure

proposed; and (iii) fixing the low complexity rows already in the transform matrix; it is only

necessary to approximate the rows highlighted in Figures 5.3, 5.4 and 5.5.

5.3 Matrix symmetries

Looking a little bit further into Figures 5.3, 5.4 and 5.5, it is possible to identify, inside the

highlighted regions, some symmetry patterns. That means it is possible to approximate only

a portion of those rows and obtain the whole matrix by reflexions on the rows, columns, or

both, of the approximated partition.

DFT and DHT

Notice that for the absolute value of the DFT and DHT in Figures 5.3 and 5.4, that are

not only low complexity rows but also low complexity columns, i = 0, N/4, N/2, 3N/4. Those

columns may also be fixed previously on the approximation matrix. Figures 5.6 and 5.7 show
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which portion of the highlighted rows in Figures 5.3 and 5.4 we need to approximate. That is,

which portion of the matrix we need to approximate in order to obtain the whole matrix apart

from the low complexity rows and columns already existent in the original matrix.

Figure 5.6: Portion of the DFT matrix to be approximated for N = 8, 16, 32, 64.

Figure 5.7: Portion of the DHT matrix to be approximated for N = 8, 16, 32, 64.

DCT

For the DCT there is no low complexity columns that can be previously fixed. However,

there symmetries in the rows that can be explored, as show in Figure 5.8.

Figure 5.8: Portion of the DCT matrix to be approximated for N = 8, 16, 32, 64.

Table 5.5 summarizes the information about the rows and columns to be approximated

for both versions of the method considering all the possible modifications presented above to

reduce the complexity of the approximation process. Table 5.6 also gives the same information
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of Table 5.5 for the case when we are only considering previously fixing the low complexity

rows. Table 5.7 summarizes which of the modifications presented above may be used for each

Table 5.5: Summary of the rows e columns to be approximated when using the unrestricted version of
the proposed method considering all the possible modifications to reduce the approximation procedure

Transform
Rows to be

approximated
Columns to be
approximated

Number
of rows to be
approximated

Number of
columns to be
approximated

DFT 1 to N/4− 1 1 to N/4− 1 N/4− 1 N/4− 1

DHT 1 to N/4− 1
1 to N/4− 1

and
N/4 + 1 to N/2− 1

N/4− 1 N/2− 2

DCT
1 to N/2− 1

and
N/2 + 1 to N − 1

0 to N/2− 1 N − 2 N/2

Table 5.6: Summary of the rows e columns to be approximated when using the restricted version of
the proposed method and previously fixing the low complexity rows of the original matrix

Transform Fixed Rows
Columns to be
approximated

Number
of rows to be
approximated

Number of
columns to be
approximated

DFT 0, N/4, N/2, 3N/4 All columns N − 4 N

DHT 0, N/4, N/2, 3N/4 All columns N − 4 N

DCT 0, N/2 All columns N − 2 N

method.

It is noteworthy that all the modifications can actually be used in association with the

restricted version of the proposed method. But, in our case (the matrices we are interested are

orthogonal), only previously fixing the low complexity rows guarantees that the output matrix

is orthogonal (which is the whole point of this version of the method).

5.4 Approximation schemes

Based on the discussion above, we can define the approximation schemes that can be used

to approximate the DCT, DHT and DFT. The DHT and DCT can be approximated using

schemes I and II, displayed in Figure 5.9. For the DFT, schemes III and IV in Figure 5.10,

which consider the complex adaptation, can be used.
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Table 5.7: Comparison of Methods I and II in terms of the complexity reduction procedures they
admit

Method I Method II

Search space reduction 3 7

Fix low complexity rows 3 3 (only if the input matrix is orthogonal)
Explore matrix symmetries 3 7

Complex adaptation 3 7

Scheme I

Use Method I with:

. Search space reduction;

. Low complexity rows fixed;

. Exploring matrix symmetries
(Figures 5.7 and 5.8).

Scheme II
Use Method II with:

. Low complexity rows fixed.

Figure 5.9: Approximation schemes for the DHT and DCT.

Notice that the approximation schemes proposed for the DFT consider only the unrestricted

version of the method. This is because none of the complex adaptations when used with the

restricted version guarantees that the output matrices obtained are orthogonal. Then, the

use of the restricted version loses its point. Also, when considering the complex adaptation

A, which means we are going to approximate the real and imaginary parts independently, we

need to verify if the size of the matrix is N = 8. In this case, we have two 8 × 8 matrices

to approximate and, if we check the portion of those matrices that need to be approximated

(Figure 5.6(a)), we can see that this region is reduced to a single element, not a vector, which

is required by the method. Then, when N = 8, we are going to approximate the entire second

row, as in Figure 5.3(a)-(b). For the approximation Scheme IV this is not a concern, since when

N = 8, the 8×8 initial matrix is converted in a 8×16 matrix by the mapping in equation (4.6)

and that single element is now a vector with two elements (the real and imaginary parts of

original complex element).
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Scheme III
Consider complex
adaptation A N = 8?

Use Method I with:

. Search space reduction;

. Low complexity rows fixed;

. Exploring matrix symmetries
(Figure 5.3(a)-(b)).

Use Method I with:

. Search space reduction;

. Low complexity rows fixed;

. Exploring matrix symmetries
(Figure 5.6).

yes

no

Scheme IV
Consider complex
adaptation B

Use Method I with:

. Search space reduction;

. Low complexity rows fixed;

. Exploring matrix symmetries
(Figure 5.6).

Figure 5.10: Approximation schemes for the DFT.
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Chapter 6
New angle-based

approximations for the
DCT

In this chapter, we use the approximation schemes previously defined to obtain new ap-

proximations for the DCT of length N = 8. In order to evaluate the obtained matrices, some

figures of merit are presented.

6.1 Figures of merit

To evaluate the performance of the proposed approximations, we selected traditional figures

of merit: (i) total error energy (ε(·)) [91]; (ii) mean square error (MSE(·)) [4], [93]; (iii) cod-

ing gain (Cg(·)) [4], [94], [95]; and (iv) transform efficiency (η(·)) [4]. The MSE and total

error energy are suitable measures to quantify the difference between the exact DCT and its

approximations [4]. The coding gain and transform efficiency are appropriate tools to quan-

tify compression, redundancy removal, and data decorrelation capabilities [4]. Additionally,

since for the unrestricted version of the method there is no guarantee of orthogonality, we also

considered the orthogonality deviation measure [96].

Hereafter we adopt the following quantities and notation: the interpixel correlation is

ρ = 0.95 [4], [60], [94], Ĉ is an approximation for the DCT, and R̂y = Ĉ ·Rx · Ĉ>, where Rx

is the covariance matrix of x, whose elements are given by ρ|i−j|, i, j = 1, 2, . . . , 8. We detail

each of these measures below.



Total Energy Error

The total energy error is a similarity measure given by [91]:

ε(Ĉ) = π · ‖C− Ĉ‖2
F,

where ‖ · ‖F represents the Frobenius norm [97].

Mean Square Error

The MSE of a given approximation Ĉ is furnished by [4], [93]:

MSE(Ĉ) = 1
8 · tr

(
(C− Ĉ) ·Rx · (C− Ĉ)>

)
.

where tr(·) represents the trace operator [4]. The total energy error and the mean square error

are appropriate measures for capturing the approximation error in a Euclidean distance sense.

Coding Gain

The coding gain quantifies the energy compaction capability and is given by [4]:

Cg(Ĉ) = 10 · log10


1
8
∑8
i=1 r

2
i,i(∏8

i=1 r
2
i,i · ‖ĉi‖2

)1/8

 ,
where ri,i is the ith element of the diagonal of R̂y [4] and ĉi is the ith row of Ĉ.

However, as pointed in [95], the previous definition is suitable for orthogonal transforms

only. For non-orthogonal transforms, such as SDCT [78] and MRDCT [87], we adopt the unified

coding gain [95]. For i = 1, 2, . . . , 8, let ĉi and ĝi be ith row of Ĉ and Ĉ−1, respectively. Then,

the unified coding gain is given by:

C∗g (Ĉ) = 10 · log10

{ 8∏
i=1

1
8
√
Ai ·Bi

}
,

where Ai = su
[(

ĉ>i · ĉi
)
�Rx

]
, su(·) returns the sum of all elements of the input matrix, the

operator � represents the element-wise product, and Bi = ‖ĝi‖2.

Transform Efficiency

The transform efficiency is an alternative measure to the coding gain, being expressed

according to [4]:

η(Ĉ) =
∑8
i=1 |ri,i|∑8

i=1
∑8
j=1 |ri,j |

· 100,

where ri,j is the (i, j)th entry of R̂y, i, j = 1, 2, . . . , 8 [4].

47



Orthogonality deviation

The orthogonality deviation [96] is a measure to quantify how close a matrix is from a

diagonal matrix. It is given by:

δ(T) = 1− ‖ diag(T)‖2
F

‖T‖2
F

.

6.2 Important definitions

A large number of new approximations were obtained considering the approximation schemes

introduced in the previous chapter. In order to optimize the presentation of those approximate

matrices, we are going to need the next two definitions:

Definition 6.1 – Equivalence

We say that two matrices are equivalent to each other when they present the same results

for a set of evaluation metrics considered. �

Definition 6.2 – Class of equivalence

A set of matrices equivalent to each other form a class of equivalence. �

Although for some cases the number of approximate matrices obtained was large, we were

able to identify a reduced number of classes of equivalence. Then, instead of presenting all the

matrices obtained, we are going to present only one representative of each class of equivalence.

The metrics that define the equivalence relationship between two matrices, the metric to select

the representative matrix of each class, and the results obtained are discussed in the next

section.

6.3 New approximations

The new approximations were obtained running approximations schemes I and II, which

are the appropriate ones for the DCT, as explained in Chapter 5. The low-complexity sets

considered to generate the search spaces are displayed in Table 6.1.

From this point on, the new approximation matrices proposed in this work are going to

be referred to as TSyCz, which means T is the representative approximation of equivalence

class Cz obtained using approximation scheme y. For example, TSIC1 is the representative

approximation of equivalence class C1 obtained using approximation scheme I.

48



Table 6.1: Low-complexity sets considered

Set Set elements

P1 {−1, 0, 1}
P2 {−1,− 1

2 , 0,−
1
2 , 1}

P3 {−2,−1, 0, 1, 2}
P4 {−3,−1, 0, 1, 3}
P5 {−1,− 1

2 ,−
1
4 , 0,−

1
4 ,−

1
2 , 1}

P6 {−2,−1,− 1
2 , 0,−

1
2 , 1, 2}

P7 {−3,−1,− 1
2 , 0,−

1
2 , 1, 3}

P8 {−2,−1,− 1
2 ,−

1
4 , 0,−

1
4 ,−

1
2 , 1, 2}

P9 {−3,−2,−1,− 1
2 , 0,−

1
2 , 1, 2, 3}

The following evaluation metrics were considered to define the the classes of equivalence:

. Total error energy;

. Mean square error;

. Coding gain; and

. Transform efficiency.

For approximations obtained using the approximation scheme I, which considers the version

of the method not constrained to orthogonality, the approximate matrix chosen to be the

representative of each class was the one with the minimum orthogonality deviation. For the

ones obtained using the approximation scheme II, the representative matrix of each class was

the one with the minimum arithmetic complexity. Table 6.2 summarizes the results obtained.

The actual matrices obtained are presented in Appendix A of this work.

Table 6.2: Total matrices and classes of equivalence obtained for the 8-point DCT

Approximation
scheme

Number of matrices
obtained

Number of classes
of equivalence

Scheme I 151 6
Scheme II 15 10

Among the matrices obtained, three had already been introduced in literature. We verified

that TSIC1 = TSIIC1 = TRDCT and TSIIC2 = TCBT−−4. Thus, for further analysis we focus

on the 13 new approximations obtained. Table 6.3 displays an overview of the representative

matrices of each class of equivalence.
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Table 6.3: Overview of the new approximations obtained from the angle based method

Approximation
scheme

Class of
equivalence

Representative
matrix

Representative
approximation

δ(T) Additions Bit-shiftings

Scheme I C2 TSIC2 ĈSIC2 0.0300 48 16
Scheme I C3 TSIC3 ĈSIC3 0.0130 80 24
Scheme I C4 TSIC4 ĈSIC4 0.0005 56 32
Scheme I C5 TSIC5 ĈSIC5 0.0086 52 16
Scheme I C6 TSIC6 ĈSIC6 0.0017 76 40
Scheme II C3 TSIIC3 ĈSIIC3 0 48 24
Scheme II C4 TSIIC4 ĈSIIC4 0 48 16
Scheme II C5 TSIIC5 ĈSIIC5 0 80 24
Scheme II C6 TSIIC6 ĈSIIC6 0 80 24
Scheme II C7 TSIIC7 ĈSIIC7 0 56 32
Scheme II C8 TSIIC8 ĈSIIC8 0 56 32
Scheme II C9 TSIIC9 ĈSIIC9 0 72 40
Scheme II C10 TSIIC10 ĈSIIC10 0 72 40

In Table 6.4, the measurements obtained for the approximations in literature along with

the results for the new approximations for the figures of merit considered to define the classes

of equivalence are shown. The DCT and integer DCT (IDCT) [98] results were included as

reference. The top five results for each measure are displayed in bold and were all obtained

from new approximations proposed in this work.
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Table 6.4: Performance measures for the DCT approximations in literature and the new approxima-
tions proposed

Approximation ε(Ĉ) MSE(Ĉ) C∗g (Ĉ) η(Ĉ)

DCT [99] 0 0 8.8259 93.9912
IDCT (HEVC) [98] 0.0020 8.66× 10−6 8.8248 93.8236
ĈWHT [77] 47.6126 0.2241 7.9461 85.3138
ĈORTEGA [79] 0.8695 0.0061 8.3902 88.7023
ĈSDCT [78] 3.3158 0.0207 6.0261 82.6190
ĈRDCT [48] 1.7945 0.0098 8.1827 87.4297
ĈMRDCT [87] 8.6592 0.0594 7.3326 80.8969
ĈBAS-2008a [80] 5.9294 0.0238 8.1194 86.8626
ĈBAS-2008b [81] 4.1875 0.0191 6.2684 83.1734
ĈBAS-2009 [82] 6.8543 0.0275 7.9126 85.3799
ĈBAS-2010 [83] 4.0935 0.0210 8.3251 88.2182
ĈBAS-2011 [84] 26.8462 0.0710 7.9118 85.6419
ĈBAS-2013 [85] 35.0639 0.1023 7.9461 85.3138
ĈCBT–1 [49] 8.5953 0.0375 8.1361 86.8051
ĈCBT–2 [49] 1.7945 0.0100 8.1361 86.8051
ĈCBT–3 [49] 1.7945 0.0098 8.1834 87.1567
ĈCBT–4 [49] 1.7945 0.0100 8.1369 86.5359
ĈCBT–5 [49] 0.8695 0.0062 8.3437 88.0594
ĈCBT–6 [49] 3.3158 0.0208 6.0462 83.0814
ĈCBT–7 [49] 2.1473 0.0665 6.4434 63.7855
ĈSIC2 0.4022 0.0028 8.4721 90.1603
ĈSIC3 0.5765 0.0040 8.4412 90.5152
ĈSIC4 0.1691 0.0011 8.7184 91.9696
ĈSIC5 0.4022 0.0028 8.4520 90.6123
ĈSIC6 0.1272 0.0008 8.7654 92.8767
ĈSIIC3 1.2194 0.0046 8.6337 90.4615
ĈSIIC4 1.2194 0.0127 8.1024 87.2275
ĈSIIC5 2.4482 0.0084 8.4301 90.5362
ĈSIIC6 2.4482 0.0265 7.8837 87.7395
ĈSIIC7 1.5452 0.0043 8.6693 91.4370
ĈSIIC8 1.5452 0.0176 8.0161 88.4340
ĈSIIC9 1.0145 0.0029 8.7393 92.3530
ĈSIIC10 1.0145 0.0114 8.1454 88.5210

51



Chapter 7
Approximations

performance on image
processing

7.1 Image compression experiments

To evaluate the efficiency of the proposed transformation matrices, we performed a JPEG-

like image compression experiment as described in [45], [48], [49]. Input images were divided

into sub-blocks of size 8×8 pixels and submitted to a bi-dimensional (2-D) transformation,

such as the DCT or one of its approximations. Let A be a sub-block of size 8×8. The 2-D

approximate transform of A is an 8×8 sub-block B obtained as follows [49], [91]:

B = Ĉ ·A · Ĉ>.

Considering the zig-zag scan pattern as detailed in [100] and shown in Figure 7.1, the initial

r, r = 1, 2, 3, . . . , 64, elements of B were retained; whereas the remaining (64−r) elements were

discarded. The previous operation results in a matrix B′ populated with zeros which is suitable

for entropy encoding [39]. Each processed sub-block was submitted to the corresponding 2-D

inverse transformation and the image was reconstructed. The 2-D inverse transform is given

by:

A =


Ĉ> ·B · Ĉ, if T for orthogonal,

Ĉ−1 ·B · (Ĉ−1)>, otherwise.



Figure 7.1: Zig-zag pattern

We considered 44 8-bit standardized images obtained from the USC-SIPI image bank [101]

and submitted them to the above described procedure. The reconstructed images were com-

pared with the original images and evaluated quantitatively according to popular figures of

merit: the mean square error (MSE) [4], the peak signal-to-noise ratio (PSNR) [102] and the

structural similarity index (SSIM) [103]. We consider the MSE and PSNR measures because

of its good properties and historical usage. However, as discussed in [93], the MSE and PSNR

are not the best measures when it comes to predict human perception of image fidelity and

quality, for which SSIM has been shown to be a better measure [93], [103].

Additionally, for better visualization of the results, we considered the relative difference for

each measures. The relative difference is given by:

RDµ = µ(C)− µ(Ĉ)
µ(C) = 1− µ(Ĉ)

µ(C)

where µ(C) and µ(Ĉ) indicate the exact DCT measure and the measure of an approximation,

respectively, and µ ∈ {MSE, PSNR, SSIM}.

For the MSE, we aim at the lowest possible results. That is, we look for approximations

whose MSE is the closest possible to the DCT MSE or even smaller. In general, for the

approximations in literature, MSE(Ĉ) > MSE(C) or, equivalently, MSE(Ĉ)/MSE(C) > 1. In

this sense, we search for approximations such that,

MSE(Ĉ)
MSE(C) → 1+,

where → 1+ represents right convergence. In other words, RDMSE → 0, or even Ĉ e C are

53



equivalents. Ideally, we want approximations such that

MSE(Ĉ)
MSE(C) < 1.

That is, RDMSE > 0, which means Ĉ presents better results than C in terms of MSE.

In other hand, for the PSNR and SSIM, we aim at the largest possible values. So in this

case, we want approximations such that the PSNR or SSIM are as large as DCT PSNR or

SSIM or even larger. Let µ ∈ {PSNR, SSIM}. Usually, approximations in literature satisfy

µ(Ĉ) < µ(C), i.e., µ(Ĉ)/µ(C) < 1. In this sense, we want approximation such that

µ(Ĉ)
µ(C) → 1−,

where → 1− represents left convergence. That is the same as saying that RDµ → 0. Ideally,

we look for approximations such that

µ(Ĉ)
µ(C) > 1,

which indicates RDµ < 0. That means that Ĉ presents better results than C in terms of PSNR

or SSIM.

7.2 Results

First, we selected three images from the USC-SIPI image bank [101] and performed the

procedure describe above. Figure 7.2 displays the selected images.

(a) Lena (b) Baboon (c) Plane

Figure 7.2: Sample images

The MSE, PSNR and SSIM of the reconstructed images obtained from using each approx-

imation presented in this work are shown in Table 7.1.
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For the experiments, we considered r = 10. In Table 7.1, the 5 best results for each measure

and sample image are highlighted. All the approximations among the 5 best for all three images

besides the DCT (ĈSIC4, ĈSIC6, ĈSIIC7, ĈSIIC9) were introduced in this work.

Table 7.1: MSE, PSNR and SSIM of each sample image compressed and reconstructed considering
the approximations 8-point DCT and r = 10

Image Lena Baboon Plane

Transform MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

DCT 40.2377 32.0845 0.9763 338.3289 22.8374 0.9064 57.3786 30.5433 0.9832
ĈWHT 62.0565 30.2029 0.9737 377.2737 22.3642 0.9138 103.5323 27.9800 0.9792
ĈSDCT 110.2814 27.7058 0.9225 455.8198 21.5429 0.8304 158.1937 26.1389 0.9363
ĈORTEGA 52.2906 30.9466 0.9722 350.1966 22.6877 0.9008 78.0402 29.2076 0.9789
ĈRDCT 58.6558 30.4477 0.9658 363.8937 22.5211 0.8723 85.8379 28.7940 0.9727
ĈMRDCT 129.0950 27.0217 0.8935 449.8371 21.6003 0.7437 179.5797 25.5882 0.9018
ĈBAS–2008a 59.8314 30.3615 0.9633 376.4999 22.3732 0.8845 93.3886 28.4279 0.9710
ĈBAS–2008b 53.1955 30.8721 0.9725 362.1343 22.5421 0.8931 84.4295 28.8659 0.9787
ĈBAS–2009 66.2534 29.9187 0.9638 389.3617 22.2273 0.8876 107.8282 27.8035 0.9714
ĈBAS–2010 49.9871 31.1422 0.9728 358.4581 22.5864 0.9088 78.4957 29.1823 0.9787
ĈBAS–2011 65.7003 29.9551 0.9567 389.5474 22.2252 0.8561 100.7354 28.0990 0.9647
ĈBAS–2013 62.0565 30.2029 0.9737 377.2737 22.3642 0.9138 103.5323 27.9800 0.9792
ĈCBT–1 93.8702 28.4055 0.9418 437.7631 21.7184 0.8257 153.5626 26.2680 0.9424
ĈCBT–2 61.1506 30.2668 0.9641 372.2386 22.4226 0.8676 86.9480 28.7382 0.9711
ĈCBT–3 59.1153 30.4138 0.9727 363.6265 22.5242 0.9038 92.9502 28.4483 0.9792
ĈCBT–4 61.7111 30.2272 0.9711 372.0019 22.4254 0.8996 94.0452 28.3974 0.9778
ĈCBT–5 55.0551 30.7228 0.9707 358.9443 22.5805 0.8966 79.3029 29.1379 0.9777
ĈCBT–6 113.2215 27.5915 0.9113 433.0143 21.7658 0.7985 166.6957 25.9116 0.9178
ĈCBT–7 50.1714 31.1262 0.9744 349.7947 22.6927 0.9023 71.2007 29.6060 0.9810
ĈSIC2 51.1731 31.0404 0.9647 350.2942 22.6865 0.8950 70.3013 29.6612 0.9756
ĈSIC3 50.5512 31.0935 0.9736 350.4899 22.6840 0.8967 69.7947 29.6926 0.9811
ĈSIC4 42.7374 31.8227 0.9754 340.5167 22.8094 0.9063 60.9795 30.2790 0.9825
ĈSIC5 51.1138 31.0454 0.9647 350.6485 22.6821 0.8942 69.5870 29.7055 0.9756
ĈSIC6 40.9147 32.0120 0.9760 338.3480 22.8372 0.9071 58.9464 30.4262 0.9829
ĈSIIC3 46.8882 31.4202 0.9745 349.1215 22.7010 0.9097 72.4104 29.5328 0.9817
ĈSIIC4 68.2633 29.7889 0.9601 370.5620 22.4422 0.8767 97.3407 28.2479 0.9663
ĈSIIC5 52.3678 30.9402 0.9765 360.4583 22.5623 0.9118 82.1987 28.9822 0.9834
ĈSIIC6 106.0005 27.8777 0.9166 412.5139 21.9764 0.8030 146.8858 26.4610 0.9243
ĈSIIC7 45.0054 31.5982 0.9774 348.9218 22.7035 0.9165 71.7508 29.5725 0.9840
ĈSIIC8 85.7326 28.7993 0.9421 388.7694 22.2339 0.8477 120.5415 27.3194 0.9491
ĈSIIC9 43.1098 31.7850 0.9772 343.9778 22.7655 0.9141 67.6742 29.8266 0.9839
ĈSIIC10 69.7013 29.6984 0.9584 370.1255 22.4473 0.8748 99.3286 28.1601 0.9652

Among the approximations in literature, only ĈWHT and ĈBAS–2013 showed up in the top

5, although it only happened for the Babbon image and SSIM measure.

In order to have a more general idea about the behavior of those transforms, we cared out

the experiments describe before for all the 44 images in the dataset, considering all the values

of r = 1, 2, . . . , 64. The MSE, PSNR and SSIM were calculated in each case. The average
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curves obtained are displayed in the plots in Figure 7.3. The curves for all the approximations

were calculated, but only the ones with better results, i.e., the ones with results closer to the

DCT results were kept in the plots in order to provide a clear visualization.
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Figure 7.3: Average curves for the MSE, PSNR and SSIM.

From the plots in Figure 7.3, we can observe that for the MSE and PSNR: (i) although

some approximations present results very close to the DCT, none of them overcomes the DCT;

(ii) the proposed approximations ĈSIC4 and ĈSIC6 show the closest results to the DCT for

small values of r. However, as r grows, their curves tend to distance themselves from the

DCT; (iii) Approximations ĈSIIC3, ĈSIIC7 and ĈSIIC9 are consistently closer to the DCT than

the approximations in literature considered in the plots, ĈORTEGA and ĈCBT–3, and, for larger

values of r, they show the closest results to the DCT.

On other hand, for the SSIM, several approximations presented results better than the
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DCT. In particular, all the approximations proposed in the work show in the plots of Figure 7.3

have results better than the DCT for, at least, 7 values of r (ĈSIC4), and, at most, 59 values of

r (ĈSIIC7 and ĈSIIC9). However, ĈORTEGA and ĈCBT–3, only showed results better than the

DCT for one and four values of r, respectively.
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Chapter 8
Fast algorithm and

hardware

Comparing the computational cost of its direct implementation, performance measures and

results in the image compression experiments, we selected one of the new approximations to

further analyze. The chosen approximation was TSIIC3. It is an orthogonal matrix, and it is

among the less complex approximations proposed. Also, it overcomes all the approximations

in literature in the performance measures and overcomes the DCT in terms of SSIM in the

image compression experiments for several values of r.

8.1 Fast Algorithm

The direct implementation of TSIIC3 requires 48 additions and 24 bit-shifting operations.

However, such computational cost can be significantly reduced by means of sparse matrix fac-

torization [6]. In fact, considering butterfly-based structures as commonly found in decimation-

in-frequency algorithms, such as [68], [104], [105], we could derive the following factorization

for TSIIC3:

TSIIC3 = D ·A4 ·A3 ·A2 ·A1,

where:

A1 =


1 1

1 1
1 1

1 1
1 −1

1 −1
1 −1

1 −1

 , A2 =
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1 1

1 1
−1 1

−1 1
1

1
1

1
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Figure 8.1: Signal flow graph of the proposed transform, relating the input data xn, n = 0, 1, . . . , 7, to
its correspondent coefficients X̃k, k = 0, 1, . . . , 7, where X̃ = x·T1. of T1. Dashed arrows representing
multiplication by −1.
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1
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2
1

1
2 −1 1

2 1
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2

 ,

and D = diag(1, 2, 1, 2, 1, 2, 1, 2). Figure 8.1 shows the signal flow graph related to the above

factorization. The computational cost of this algorithm is only 24 additions and six multiplica-

tions by two. The multiplications by two are extremely simple to be performed, requiring only

bit-shifting operations [4]. The fast algorithm proposed requires 50% less additions and 75%

less bit-shifting operations when compared to the direct implementation. The computational

costs of the considered methods are shown in Table 8.1.

In general terms, DCT approximations exhibit a trade-off between computational cost and

transform performance [86], i.e., less complex matrices effect poor spectral approximations [4].

Departing from this general behavior, the proposed transformation TSIIC3 has (i) excelling

performance measures and (ii) lower or similar arithmetic cost when compared to competing

methods, as shown in Table 8.1.

8.2 FPGA Implementation

The proposed design along with TORTEGA and TCBT–3 were implemented on an FPGA chip

using the Xilinx ML605 board. Considering hardware co-simulation the FPGA realization was

tested with 100,000 random 8-point input test vectors. The test vectors were generated from
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Table 8.1: Computational cost comparison

Method Multiplications Additions Bit-shifts

DCT [59] 11 29 0
IDCT (HEVC) [98] 0 50 30

TSIIC3 (proposed) 0 24 6
ĈORTEGA [79] 0 24 2
TSDCT [78] 0 24 0
TRDCT [48] 0 22 0
TMRDCT [87] 0 14 0
TBAS-2008a [80] 0 18 2
TBAS-2008b [81] 0 21 0
TBAS-2009 [82] 0 18 0
TBAS-2011 [84] 0 16 0
TBAS-2013 [85] 0 24 0
TCBT–1 [49] 0 22 4
TCBT–2 [49] 0 22 6
TCBT–3 [49] 0 24 0
TCBT–4 [49] 0 24 4
TCBT–5 [49] 0 24 6
TCBT–6 [49] 0 18 0
TCBT–7 [49] 0 28 12

within the MATLAB environment and, using JTAG based hardware co-simulation, routed

to the physical FPGA device where each algorithm was realized in the reconfigurable logic

fabric. Then the computational results obtained from the FPGA algorithm implementations

were routed back to MATLAB memory space. The diagrams for the designs can be seen in

Figure 8.2.

The metrics employed to evaluate the FPGA implementations were: configurable logic

blocks (CLB), flip-flop (FF) count, and critical path delay (Tcpd), in ns. The maximum op-

erating frequency was determined by the critical path delay as Fmax = (Tcpd)−1, in MHz.

Values were obtained from the Xilinx FPGA synthesis and place-route tools by accessing the

xflow.results report file. Using the Xilinx XPower Analyzer, we estimated the static (Qp

in W) and dynamic power (Dp in mW/MHz) consumption. In addition, we calculated area-

time (AT ) and area-time-square (AT 2) figures of merit, where area is measured as the CLBs

and time as the critical path delay. The values of those metrics for each design are shown in

Table 8.2.

The design linked to the proposed design approximation TSIIC3 possesses the smallest Tcpd
among the considered methods. Such critical path delay allows for operations at a 8.55% and

19.96% higher frequency than the designs associated to TORTEGA and TCBT–3, respectively.
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Figure 8.2: Architectures for (a) TSIIC3, (b) TORTEGA, and (c) TCBT–3.

Table 8.2: Hardware resource consumption and power consumption using Xilinx Virtex-6
XC6VLX240T 1FFG1156 device

Approximation CLB FF
Tcpd

(ns)
Fmax

(MHz)
Dp

(mW/GHz)
Qp

(W)
AT AT 2

TSIIC3 (proposed) 135 408 1.750 571 2.74 3.471 236 413
TLO [79] 114 349 1.900 526 2.82 3.468 217 412
T6 [49] 125 389 2.100 476 2.57 3.460 262 551

In terms of area-time and are-time-square measures, the design linked to the approximation

TORTEGA presents the best results, followed by the one associated to TSIIC3.
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Chapter 9
Conclusion

In this work, we introduced a greedy algorithm to find low-complexity approximations for a

given matrix based on angular distance. The initial version of the method had no constraints.

Thus, in order to guarantee the orthogonality of the obtained approximations, we proposed

a constrained to orthogonality version of the algorithm. Then, we discussed several ways to

reduce the algorithm complexity by exploring the DFT, DHT and DCT structural features

and defined approximations schemes. The defined approximations schemes were used to derive

new approximations for the 8-point DCT. Thirteen new approximations were obtained. All

of them had outstanding results in terms of performance measures and six of them had also

great results in the image compression experiments. Based on the results from the evaluation

steps, we took TSIIC3 and proposed a fast algorithm for it that requires only 24 additions and

6 bit-shiftings operations. The FPGA implementation of TSIIC3 was also implemented and

compared to TORTEGA and TCBT–3. In this case, TSIIC3 also overcame the approximations

in literature, being able to work at a 8.55% and 19.96% higher frequency than the designs

associated to TORTEGA and TCBT–3, respectively.
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