

MODELAGEM CHUVA-VAZÃO DE DOIS RIACHOS URBANOS AFLUENTES DO BAIXO CAPIBARIBE

Gastão Cerquinha da Fonseca Neto¹; Jaime Joaquim da Silva Pereira Cabral²

¹Estudante do Curso de Engenharia Civil - CTG – UFPE; E-mail: gastaocerquinha@gmail.com, ²Docente/pesquisador do Depto de Engenharia Civil – CTG – UFPE; E-mail: jcabral@ufpe.br

Sumário: Este trabalho apresenta um estudo da drenagem dos riachos Parnamirim e Cavouco, ambos no baixo curso do rio Capibaribe em Recife-PE. A análise foi realizada através da utilização do programa SWMM (Storm Water Management Model) prevendo um evento extremo de chuva para a região. Como resultado busca-se prever os principais pontos de alagamento, possibilitando um controle mais adequado no manejo de águas pluviais. Para simulação dos eventos extremos e consequências para a drenagem urbana foi utilizado o software SWMM (Storm Water Management Model) que significa modelo de gestão de águas pluviais. O riacho Cavouco tem aproximadamente 5,5km de extensão, desde sua nascente, mais conhecida como laguinho da UFPE, até a sua jusante no rio Capibaribe, próximo ao parque do Caiara. O Riacho Parnamirim possui aproximadamente 2,8km, avaliado em seu curso original. O riacho sofreu muitas alterações ao longo do tempo, tendo hoje apenas 1km identificável. A modelagem apontou 4 pontos de alagamento no riacho Parnamirim e 5 pontos no riacho Cavouco.

Palavras-chave: chuva/vazão; drenagem urbana; riacho cavouco; riacho parnamirim

INTRODUÇÃO

Recife sofre com inundações em vários pontos da cidade provocadas pela urbanização desordenada. No processo de urbanização, muitos riachos foram canalizados e suas respectivas áreas de várzea foram aterradas. Houve o estrangulamento da calha dos rios e riachos devido à ocupação irregular, e até formal de suas margens, processo contínuo, que põe em risco o sistema de drenagem natural (CABRAL et al., 2005).Com o crescimento urbano o solo foi vastamente impermeabilizado impedindo a infiltração natural das águas pluviais no solo. Essa alteração exige uma maior capacidade de escoamento, excedendo as seções do riacho (Tucci, 2001). A ocupação das áreas com potencial de inundação deve ser evitada através do planejamento do uso do solo, previsto no Plano Diretor Urbano (Tucci, 2001). Modificações artificiais em rios alteram o escoamento superficial. A construção de bacias de retenção, por exemplo, tende a distribuir o volume escoado. Já a canalização, acelera o escoamento e aumenta o pico de vazão, é o que acontece numa bacia urbana. Práticas de revitalização de riachos urbanos têm demonstrado ser uma boa alternativa para o resgate de suas funções hidráulica, hidrológica, ecológica e social nas cidades. Renaturalização das margens e desocupação de áreas ribeirinhas são ações cada vez mais comuns quanto à gestão dos riachos urbanos em países desenvolvidos. O presente subprojeto de pesquisa pretende conhecer melhor o comportamento hidrológico de dois afluentes do baixo Capibaribe, na planície de Recife, analisando as suas respostas de acordo com precipitações pluviométricas de grande intensidade.

MATERIAIS E MÉTODOS

Para desenvolvimento do trabalho foi utilizado o programa de modelagem Chuva/Vazão SWMM (Storm Water Management Model) desenvolvido pela Agência de Proteção ao Meio Ambiente dos Estados Unidos (EPA - Environmental Protection Agency). É

considerado um modelo de base física, emprega os princípios de conservação de massa, energia e momento. É comumente aplicado em áreas urbanas a fim de auxiliar no planejamento, análise e concepção de projetos de escoamentos de águas pluviais. Simula os fenômenos hidrológicos e hidráulicos fornece resultados relativos à qualidade e quantidade das águas do escoamento gerado a partir do sistema de galerias para a previsão de vazões, pontos de inundação e de poluentes. Os dados de entrada foram obtidos com a ajuda de SIG, associados a visitas de campo, dados do projeto Maplu (projeto da rede nacional de pesquisa em drenagem urbana)sobre a bacia, dados obtidos do programa Rios da Gente do Governo do Estado de Pernambuco, do projeto Parque Capibaribe(parceria UFPE e Prefeitura do Recife) e informações obtidas da Elaboração do Plano Diretor de Drenagem Urbana do Recife.Quanto às alternativas para os modelos do processo foram selecionadas as opções: Chuva/Vazão e Fluxo. Para o modelo de transporte foi utilizado a Onda Dinâmica porque leva em consideração todos os componentes da equação de Saint-Venant. As bacias hidrográficas em estudo foram divididas em sub-bacias, unidades hidrológicas superficiais, com características como permeabilidade, declividade e armazenamento consideradas homogêneas. Essa divisão foi realizada utilizando o critério de uso e ocupação do solo. Nessas sub-bacias a precipitação também é considerada uniformemente distribuída. Cada área drena suas águas para um ponto de descarga, os nós, onde ocorre o transporte pelo sistema de riachos ou galerias. Foram geradas, 8 sub-bacias para o riacho Parnamirim e 12 sub-bacias para o riacho Cavouco, ao todo são 31 condutos e 31 junções, direcionadas a um único exutório. O programa permite a simulação de todos os elementos integrados, sendo possível em uma única simulação a associação do curso principal e dos dois riachos em análise em um só modelo. Os dados de precipitação foram fornecidos em intensidade para um pluviômetro, e com o intervalo de tempo de 5 min. O tempo de retorno foi escolhido 10 anos aplicados na equação de intensidade de chuvas de Ramos e Azevedo (2010) (eq 1).

$$i = \frac{1423,97 \, T^{0,1124}}{(t+21)^{0,7721}}$$
 equação 1

0:00	0:05	0:10	0:15	0:20	0:25	0:30	0:35	0:40	0:45	0:50	0:55	1:00	1:05	1:10	1:15	1:20	1:25	1:30
9.48	10.00	10.58	11.24	11.99	12.85	13.86	15.04	16.46	18.18	20.31	23.01	26.54	31.32	38.10	48.37	65.38	97.73	175.80
1:35	1:40	1:45	1:50	1:55	2:00	2:05	2.10	2:15	2:20	2:25	2:30	2:35	2:40	2:45	2:50	2:55	3:00	
1.00	1.40	1.45	1.50	1:55	2:00	2:05	2:10	2:15	2:20	2:25	2:30	2:35	2.40	2:45	2:50	2:55	3:00	

Tabela 1- Tempo e intensidade de chuva para tempo de retorno 10 anos

RESULTADOS

O riacho Cavouco apresenta suas margens requalificadas por um longo trecho. A requalificação constou de paredes de meia altura nas laterais da calha principal e a partir da parede inicia um talude gramado que se estende até a calçada dos pedestres caracterizando uma calha ampliada para vazões em épocas de chuvas intensas. Quando natural possui suas margens ocupadas por habitações de nível econômico baixo, à exceção de um trecho de próximo ao rio Capibaribe. No trecho que separa os bairros da Iputinga e Cordeiro possui ciclovias e pista de Cooper onde no início da manhã e no fim da tarde muitas pessoas fazem suas caminhadas de lazer ou terapêuticas nas passarelas.

O riacho Parnamirim encontra-se amplamente canalizado, com algumas pequenas exceções que somadas chegam a 165m. O Parnamirim tem sua principal nascente indicada na parte alta do bairro do Monteiro. Deste ponto até a Rua Jerônimo de Albuquerque o

riacho é tratado como microdrenagem, sendo uma grande extensão interpretada como coberto por via de circulação.

O modelo Computacional SWMM usa a formulação matemática para um sistema natural que leva em consideração diversos aspectos relacionados à propagação de vazão. Entre eles, devemos estar atentos às variações horárias da maré que são responsáveis pelo fenômeno de remanso segundo o qual interferem nas condições de escoamento das águas nos riachos. A seguir temos um exemplo da vazão obtida no cálculo do riacho Cavouco.

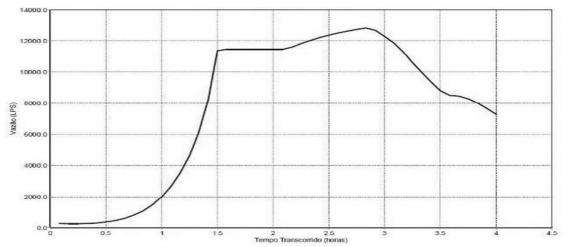


Figura 1 - Vazão do Riacho Cavouco para duração de 90 minutos e tempo de retorno de 10 anos

O modelo nos mostra que há 4 nós no riacho Parnamirim vulneráveis a alagamentos (P25, P27, P28, P30), assim como 5 nós no riacho Cavouco (C15, C21, C22, C23, C24) . Abaixo temos o perfil longitudinal do Riacho Cavouco.

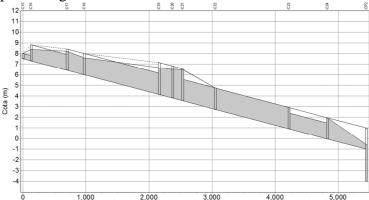


Figura 2 - Perfil longitudinal do Riacho Cavouco para duração de 90 minutos e tempo de retorno de 10 anos

A seguir temos a lâmina d'água para o Cavouco resultado do modelo.

Figura 3 - Lâmina de alagamento, Riacho Cavouco (Av. Caxangá em preto tracejado)

DISCUSSÃO

Recife passou por históricas enchentes do Rio Capibaribe. Hoje após as construções de barragens ao longo da bacia, outros fatores causam transtornos de menor impacto, porém de maior frequência o que por vezes prejudica, principalmente, a mobilidade, a infraestrutura da cidade e bens particulares. Este trabalho é importante, pois com seus resultados podemos copreender melhor a dinâmica das águas urbanas e pensar soluções a fim de fazer a cidade entrar em sintonia com a natureza. Os resultados podem ser considerados satisfatórios, entretanto, para haver maior segurança o modelo ainda pode passar por calibração. O SWMM já é um programa bastante difundido e utilizado como base para diversos estudos na área e ainda possui um módulo de desenvolvimento de baixo impacto (LID, do inglês low impact development) e um módulo que avalia contaminação dos cursos d'água. Assim, como sugestão para mais estudos temos a aplicação destes métodos para análise de first flush (primeira água da chuva que arrasta contaminantes para os riachos.

CONCLUSÕES

Os riachos urbanos possuem relevante participação na drenagem de Recife, sendo responsáveis pelo correto escoamento das águas pluviais. A gestão de bacias hidrográficas deve visar a redução de áreas impermeáveis de forma a contribuir para o rebaixamento do pico de vazão. Deve-se também, evitar o estrangulamento das seções, ampliando as áreas marginais dos riachos e como consequência reduzir os alagamentos. Os riachos de Recife recebem um grande volume de resíduos sólidos e efluentes domésticos o que afeta o sistema natural, prejudica o aspecto visual e produz odores que afastam as pessoas desses locais. O SWMM é uma ferramenta poderosa para o cálculo das lâminas d'água e vazões, permitindo avaliar vários parâmetros em diferentes perspectivas.

AGRADECIMENTOS

À Universidade Federal de Pernambuco, ao departamento de engenharia civil e aos professores que propiciaram a fundamentação acadêmica. Ao CNPq pelo amparo financeiro da bolsa de iniciação científica. À Prefeitura do Recife e ao Governo do Estado por disponibilizar informações que muito contribuíram para a realização deste trabalho.

REFERÊNCIAS

Ramos, M. A. & Azevedo, J. R. G. 2010. Nova equação de chuvas intensas para a cidade de Recife-Pernambuco. X Simpósio de Recursos Hídricos do Nordeste. Fortaleza/Ceará.

Tucci, C. E. M. 2001. Hidrologia: ciência e aplicação. Organizado por Carlos E. M. Tucci. –2.ed.; 2.reimp. - Porto Alegre: Ed. da Universidade/UFRGS: ABRH.

Cabral, J. J. S. P.; Alencar, A.V. 2005. Recife e a Convivência com as Águas. In: Hydroaid (Itália), PMSS/ Ministério das Cidades. (Org.). Gestão do Território e Manejo Integrado das Águas Urbanas. Brasília: Ministério das Cidades, 2005, v., p. 111-130.